Offshore Wind Risks - Issues and Mitigations

Baltexpo 2011 - Offshore Wind presented by DNV

Ian Chester / Jan Talaśka
2011-09-05
DNV – An Independent Foundation

300 offices

100 countries

9,000 employees, of which 76% have a university degree
Services to the Wind Industry

Advisory Services

- Wind Resource Assessment
- Project Development Support
- Due Diligence
- Marine Advisory Services
- Asset Risk Management
- Wind Turbine Technology
- Health, Safety and Environmental Risk Management
- Training and Educational Programs

Accredited Services

- Project Certification
- Type Certification
- Testing Services
 - Power Performance Testing
 - Loads Testing
Major Risks in Offshore Wind Farms

- Wind energy uncertainty
- Construction
- Turbine technology
- Turbine foundations
- Subsea cables
- Grid connection
- Offshore access
- Marine conditions
- Regulatory regime
Offshore Wind - Combining DNV competences

25 years of hands-on experience with wind turbines + 40+ years of offshore oil & gas experience = Global leader in project risk and certification of offshore wind projects
Wind Energy Uncertainty

- **Issue**
 - Reliability of kWh generated estimates
 - Real on-site data are scarce
 - Wind resource estimates have large uncertainty
 - Loss factors are not well understood (e.g. wakes and turbulence)
 - Potential large variation in wind resource across a R3 site

- **Mitigation**
 - Offshore measurement (fixed tower, novel solutions) over sufficient period of time (> 2 years)
 - Layout optimisation and understanding the trade-offs
 - Transparency of energy estimates
Site Conditions – Marine Environment

- **Issue**
 - The weather and sea conditions
 - Varying water depths and sea bed conditions across a site
 - Weather window for offshore work is small

- **Mitigation**
 - Solid, site-specific information
 - Measurement campaigns
 - Data mining
 - Geotechnical investigation
 - Safety factors in design
 - Relevant learning from oil and gas
 - Development / use of equipment / methods suitable in adverse conditions
Wind Turbine Technology

- **Issue**
 - Large MW turbines required 10 MW?
 - Component failures difficult to rectify offshore

- **Mitigation**
 - Turbine selection
 - Strong warranty agreements
 - Condition monitoring
 - Data monitoring, analysis and response
 - Proactive maintenance
 - Further research into design loadings
 - Turbine type certification
 - Engineered for reliability
Wind Turbine Foundations

- **Issue**
 - Costly foundation designs due to:
 - Harsher marine conditions
 - Deeper water
 - Larger turbines
 - Shallow-water solutions may not work

- **Mitigation**
 - Standardisation
 - Quality control during manufacture
 - Research programs (e.g. Carbon Trust OWA)
 - Information sharing between WTG manufacturer and foundation designers for benefit
Subsea Cables and Power Transmission

Issue
- Many problems during cable installation, e.g. improper cable handling
- Human introduced hazards (e.g. anchoring)
- Natural hazards (seabed mobility)
- Unplanned downtime not considered in energy estimates

Mitigation
- Cabling
 - Understand site-specific conditions
 - Chose appropriate cabling design (e.g. armour, burial depth, scour protection)
 - Work with experienced partners
 - Plan with contingencies
- Substation
 - Realistic expectations for annual maintenance time
 - Include unplanned outages
 - Diligent inspections and maintenance
Grid Connection

- **Issue**
 - Load centres are far away from offshore wind farms
 - Congestion in certain areas of the grid
 - Long distance / high power will require (less proven) offshore HVDC solutions
 - Uncertainty about ownership / operation of assets

- **Mitigation**
 - Early dialogue between developer and grid operator
 - Careful evaluation of various options
Construction

- Issue
 - Major project
 - Contract strategy selection
 - Managing the interfaces
 - Supply chain and facilities
 - Unexpected technical issues

- Mitigation
 - Previous project experience
 - Project lifecycle engineering supervision
 - Installation concept studies
 - Develop your own team
 - Plan A, B and C
 - Project Certification
Construction Vessels

- **Issue**
 - Vessels are scarce and expensive (e.g. +100 k£/day + mob/demob)
 - Capabilities (crane, deck space, propulsion) limited
 - Vessel reliability

- **Mitigation**
 - Developers building own vessels
 - Long-term contracts (but uncertainties about project schedules)
Offshore Access

- **Issue**
 - Current access solution (boat fendering) limited by sea state (e.g. < 1.5 m significant wave height)
 - Access to turbines more frequent than expected
 - Health and safety issues – reputational risk

- **Mitigation**
 - Improvement of current solutions (e.g. to 3 m significant wave height)
 - New access solutions (e.g. heave-compensated gangway)
 - Additional access by helicopter-hoisting
 - Research programs (e.g. UK Carbon Trust OWA)
Operations & Maintenance

- **Issue**
 - Determining the optimum O&M approach
 - Lack of deep offshore wind O&M experience in the market
 - Limited experienced personnel
 - Personnel health and safety issues

- **Mitigation**
 - Minimise need to access the turbines
 - Turbines designed for easy O&M
 - O&M considered at the windfarm design concept stage
 - Specialist vessels required
Regulatory Regime

- **Issue**
 - Investors looking for long-term certainty
 - UK ROC scheme reasonably successful, but also discussion about feed-in tariffs
 - Carbon tax

- **Mitigation**
 - Firm statement and action from Government
 - Long-term agreements
 - Know the market
An Opportunity

- The wind industry is moving further offshore
- Need to quantify offshore risk and become comfortable with it
- Lever oil & gas experience
- Prime movers will have an advantage
- Reliable project outturns – cost, schedule and quality
Safeguarding life, property and the environment